
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS                                      Vol. 5, No. 7, July 2011, p. 745 - 750 
 

Newly developed quasi-cyclic low density parity check 
codes for hard disks record data 
 
 
ABID YAHYA*, FARID GHANI, R. BADLISHAH AHMED 
School of Computer and Communication Engineering, University Malaysia Perlis (UniMAP), 02000 Kuala Perlis,  
Perlis, Malaysia 
 
 
 
This paper presents a new technique for constructing the Quasi-Cyclic low density parity check (QC-LDPC) codes based on 
row division method. The new codes offer more flexibility in term of girth, code rates and codeword length. In this method of 
code construction, the rows are used to form as the distance graph. Then they are transformed to a parity-check matrix in 
order to acquire the desired girth. Simulation results show that the proposed QC-LDPC codes achieve a 0.1dB coding gain 
over randomly constructed codes and perform 1.3 dB from the Shannon-limit at a BER of 10-6 with a code rate of 0.89 for 
block length of 1332. 
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1. Introduction 
 
Hard Disks (HDDs) record data by 

magnetizing ferromagnetic material in the way of 
magnetization represent patterns of binary data bits. The 
recorded data are read from the disk by detecting the 
transitions in magnetization and decoding the original data. 
Different encoding systems, such as Modified Frequency 
Modulation, group code recording, run-length 
limited encoding, and others are employed. 

The opponent of hard drives is thermostat. The 
devices store data in bits, which are microscopic spots on a 
hard drive platter. The bits themselves are made up of 
about 50 to 100 cobalt-platinum grains. When the grains 
get magnetized in a particular direction, the bit represents 
either a "1" or "0". To increase the areal density, which is 
the amount of data a single platter inside a hard drive can 
hold, technologists have squinched the size of bits and 
grains over the years. This has assisted computer 
manufacturers to enhance the competence of hard drives 
from a few megabytes to more than 100 gigabytes. 

Sequent years of shrinkage, nevertheless, have led to 
magnetic grains that measure about 8 nanometers long. 
Reducing the grains more in size could cause them to flip 
at room temperature and so damage the data--an aspect of 
the "super paramagnetic effect," first recognized in the 
mid-1990s by Stan Charap of Carnegie Mellon University 
and bringing down on the number of grains inside each bit, 
absent additional changes, would increase noise and 
decrease reliability. 

 Barium titanate, BaTiO3 is the first ferroelectric 
ceramics, which is a good candidate for a variety of 
applications, such as piezoelectric actuators, multiplayer 
ceramic capacitors and positive temperature coefficient 
resistors, due to its excellent dielectric, ferroelectric and 
piezoelectric properties [1]. 

Drive manufacturers have bought time with 
perpendicular drives, which stack the bits in vertical 
position. But the "no more shrinkage" problem has yet 
solved by that solution. The heat-assisted site requires to 
modify the grains. Unlike cobalt-platinum grains, iron-
platinum grains will not flip at room temperature. To 
record or erase data, a laser integrated into the drive would 
heat a specific bit. The data would get recorded or erased, 
and the bit would quickly cool. 

Recent drives also construct wide use of Error 
Correcting Codes (ECCs), especially Reed–Solomon error 
correction codes. These methods store extra bits for each 
block of data that are found out by mathematical formulas. 
The additional bits permit many errors to be determined. 
Though these extra bits adopt space on the hard drive, they 
permit higher recording densities to be employed, follow-
on in much larger storage capacity for user data. In this 
proposal the newest drives, low-density parity-check 
codes (LDPC) are supplanting Reed-Solomon. Since 
LDPC codes facilitate performance close to the Shannon 
Limit and therefore permit for the highest storage density 
obtainable. 

Channel coding plays key role in providing a reliable 
communication method that can overcome signal 
degradation in practical channels. The breakthrough of 
convolutional codes [2] led off a new field of study into 
non-algebraic codes based on linear transformations using 
generator and parity-check matrices. Convolutional codes 
are encoded using a finite-state process, which generates 
them a linear order encoding scheme. Subsequently, 
convolutional codes led to the discovery of a class of codes 
called Turbo codes [3], which are the class of concatenated 
convolutional codes and randomize the order of some of 
the bits by using an interleaver.  

Turbo codes are the first known capacity approaching 
error correction codes, which provide a powerful error 
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correction capability when decoded by an iterative 
decoding algorithm [3]. The rediscovery of low density 
parity check (LDPC) code, which was originally proposed 
by Gallager [4] and was later generalized as MacKay-Neal 
code [5] put back Turbo coding as the forward error 
correction (FEC) technique. LDPC codes were neglected 
for a long time as their computational complexity for the 
hardware technology was very high. LDPC codes have 
acquired considerable attention due to its near-capacity 
error execution and powerful channel coding technique 
with an adequately long codeword length [6]. LDPC codes 
have several advantages over Turbo codes. In the decoding 
part, Turbo code faces difficulty to apply parallelism due 
to the sequential nature of the decoding algorithm. In case 
of LDPC, decoding can be accomplished with a high 
degree of parallelism to attain a very high decoding 
throughput. LDPC codes do not need a long interleaver, 
which usually causes a large delay in Turbo codes. LDPC 
codes can be constructed directly for a desired code rate 
while Turbo codes, which are based on convolutional 
codes, require other methods such as puncturing to acquire 
the desired rate. 

The codes are classified into two major categories, 
explicitly, block codes and convolutional codes. Hamming 
codes, Bose- Chaudhuri-Hocquenghem (BCH) codes; 
Reed-Solomon codes (RS) [7-8] and newly rediscovered 
LDPC codes are the example of block codes.  Block codes 
like Hamming, BCH and RS codes have structures but 
with limited code length. A bounded-distance decoding 
algorithm is usually employed in decoding block codes 
except LDPC codes. In general, it is hard to use soft 
decision decoding for block codes. 

Advances in error correcting codes have revealed that, 
using the message passing decoding algorithm, irregular 
LDPC codes can accomplish consistent communication at 
SNR very close to the Shannon limit as Compared to 
Turbo codes [9]. The numerical analysis method for 
calculating the threshold of the LDPC codes is examined 
by Hou et al, [10] over AWGN channel with uncorrelated 
flat Rayleigh fading channel. Additionally, using the 
nonlinear optimization technique of differential evolution, 
the degree distribution pairs are optimized for the 
uncorrelated Rayleigh fading channel and it has been 
observed that their threshold values are very close to the 
capacity of this channel for moderate block size with 
excellent performance. The two adaptive coded 
modulation schemes employing LDPC codes for Rayleigh 
fading channels are proposed by Zhang et al., [11]. It is 
shown from their work that the proposed schemes have 
made good use of the time-varying nature of Rayleigh 
fading channel. It is also observed that the proposed 
schemes perform better by employing LDPC with large 
code length. 

 The performance of irregular LDPC codes is 
investigated in [12]  with three BP based decoding 
algorithms, specifically the Uniformly Most Powerful 
(UMP) BP-based algorithm, the Normalized BP-based 
algorithm, and the Offset BP-based algorithm on a fast 
Rayleigh fading channel by employing density evolution 
(DE). It is observed from the study that the performance 

and decoding complexity of irregular LDPC codes with the 
offset BP-based algorithm can be very close to that with 
the BP algorithm on the fast Rayleigh fading channel. 
After successful evolution of irregular LDPC codes, 
Ohhashi and Ohtsuki [12] then analyze the performance of 
regular LDPC codes with the normalized BP-based 
algorithms on the fast Rayleigh fading channel. Formulas 
for short and long regular LDPC codes are derived based 
on the probability density function (PDF) of the initial 
likelihood information and DE for the normalized BP-
based algorithm on the fast Rayleigh fading channel. 
Performance of the long regular LDPC codes with the 
Normalized BP-based algorithm in the proposed method 
outperforms the BP and the UMP BP-based algorithms on 
fast Rayleigh fading channel. In this paper new QC-LDPC 
codes have been developed and then implement the newly 
designed codes on FPGA platform. Simulation results 
demonstrate that the proposed QC-LDPC codes achieve a 
0.1dB coding gain over randomly constructed codes and 
perform 1.3 dB from the Shannon-limit at a BER of 

610−
with a code rate of 0.89 for block length of 1332. 
 
 
2. Quasi-cyclic LDPC codes 
 
Quasi-Cyclic LDPC codes form a large class of codes 

with nice encoding and decoding, which have been 
comprehensively premeditated in the sense that their 
hardware is both cheap and easy to implement. Since both 
encoding and decoding require less memory, which have 
many gains for hardware and software implementations. 
This memory advantage is catered by being able to 
illustrate the matrices employing a series of short 
polynomials. 

A code is pronounced to be quasi-cyclic (QC) if a 
cyclic shift of any codeword by p  positions is still a 
codeword. Thus a cyclic code is a QC code with . 
The block length  of a QC code is a multiple of , as a 
result 

                              (1) 
 

Circulants, or cyclic matrices, are indispensable 
components in the generator matrix for a QC code. 

A circulant matrix is defined as a square matrix, such 
that each row is incurred by a cyclic shift of the preceding. 
The parity-check matrix of a QC code is decomposed into 

 blocks of circulant matrices, with submatrix 
dimensions , where ν and are the circulants 
number in row and column, respectively.  

Let C  be a  matrix. It can be said that C  is 
circulant if its rows are incurred by successive shifts. This 
means that a QC code can be distinguished by a generator 
matrix of the form [13-16]: 

 
                 (2) 

 
where are circulants of order 

 of the form: 



Newly developed quasi-cyclic low density parity check codes for hard disks record data 
 

747

    (3)  

Consider weight-1 and weight-2 circulants, in 
polynomial form, by referring the positions of the 1’s in 
the first row of the circulant. Circulant with weight-2 is 
denoting in the polynomial form: 

 

              (4) 

Great care has to be taken while dealing with the 
values of  and , since efficient decoding and removal of 
short cycles depend on these values. 

 
2.1 New algorithm for quasi-cyclic LDPC codes 
 
The proposed algorithm for the construction of the 

new QC-LDPC  code is as described in the 
following steps: 

1. The codeword can be encoded as follows; 
 

                      (5) 
 
where Η represents parity check matrix and C denotes 
codeword.  

2. For an efficient encoding the codeword’s rows are 
split into sub rows with respect to group size. 
 

                        (6) 
 
where  and  represent the information and parity check 
bits respectively. 

3. The constraint of group’s number on row weight 
size persists the row-column (RC) connections to generate 
variety of codes. 
 

                          (7) 
 
where  represents group size and  stands for number of 
row. 

4. In each sub row the number of 1-component is 
selected in order to maintain the concentrated degree of 
distribution which results in random selection. Otherwise 
non-concentrated degree of distribution will appear. 
 
 
 
 

 

   (8)  

       

 
A   array is obtained from the aforesaid 

equations, where is the permutation matrix with the 
location vector of the field elements, cyclically shifting 
codeword by one position. Therefore, each row of is 
obtained from shifting the rows of the identity matrix to 
the left. Hence is  circulant permutation matrix 
and is  array of  circulant permutation 
matrix. 

Let  denote the rows of the parity check 
matrix H. First in this work consider splitting each row of 
H into the same number of sub rows. All the new sub rows 
have the same length as the original row. The weight (or 
“1s”) of the original row is distributed among the sub 
rows. A regular row weight distribution can be done as 
follows. Let  be a positive integer, split each row of H 
into  sub rows . The distribution of  

“ones” of  into  is carried out in a 

rotating manner. In the first rotation, the first “1” of  is 
put in , the second “1” of  is put in  and so on. In 
the second rotation, the th “one” of  is put in , 
the th “one” of   is put in   and so on. This 
rotating distribution of the “ones” of   continues until all 
the “ones” of   have been distributed into the   sub rows. 

The above row’s splitting results in a new parity check 
matrix H with rows which has the following 
structural properties: (1) each row has weight   (2) every 
column has weight  (3) any two rows (or columns) have at 
most one 1-component in common. Such a sparse parity-
check matrix is said to be   regular and the code 
generated by it is called  a regular code. The 
constraint on the rows and columns of H given by property 
(3) is called the row-column (RC) constraint. Therefore, 
the above row’s splitting results in a new parity check 
matrix with smaller density. Moreover, when the parity 
check matrix is systematic, one can easily use it to extract 
the density of the code. 

5. Select the rows (a) find the row with the least 
distance (b) Store shift values of  the submatrices  (c) 
UNION (‘rows’) 

The shift values of the submatrices are stored in order 
to reduce the memory requirement by a factor , when 

 circulant permutation matrices are employed. This 
lead us to a point that a location of 1 is fixed in the first 
row and determine the location of other 1 uniquely 
therefore the required memory for storing the parity check 
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matrix of the QC-LDPC code can be reduced by a factor 
. 
 
 
3. Results and discussion 
 
3.1 Performance of Large Girth QC-LDPC codes 
 
Fig. 1 compares the BER performance of QC-LDPC 

code with girth 12 with that of the random constructed 
code. Both codes have a block length 2041 and have 
similar performance in low /b oE N  region. In high 
region, the new QC-LDPC code with girth 12 performs 
better than the randomly constructed code approximately 
by 0.4 dB at a BER of 510−  with 45 iterations. 
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Fig. 1. BER performance of regular girth-12 QC-LDPC  
codes, with a block length 2041. 

 

Fig. 2 compares the BER performance of QC-LDPC 
code with girth 16 with that of the randomly constructed 
code. Both codes have a block length 2947 and maximum 
number of iterations is set to 25. The performance 
difference of the randomly constructed and QC-LDPC 
code are minor in low region of /b oE N . However, in the 

high  /b oE N  region, the proposed code with girth 16 

achieves 0.056 dB again at a BER of 510− over the 
randomly constructed code. 
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Fig. 2.  BER performance of regular girth-16 QC-LDPC 

 codes, with a block length 2947. 
 

Fig. 3 compares the BER performance of QC-LDPC 
code of girth 20 with that of the randomly generated code. 
Both codes have a block length 3641 and maximum 
number of iterations is set to 30. The newly obtained QC-
LDPC code of girth 20 outperforms the randomly 
constructed code approximately by 0.27 dB at 510− BER. 
Simulation results show that the new QC-LPDC codes 
perform better than the randomly generated codes.  
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Fig. 3. BER performance of regular girth-20 QC-LDPC  

codes, with a block length 3641. 
 
 

Figs. 1 to 3 show that the performance difference of 
the randomly constructed and QC-LDPC codes are minor 
in low region of /b oE N  but at high region 

of /b oE N proposed QC-LDPC codes outperform 
randomly constructed codes. The reason is that at high 
SNR, random codes experience error floor due to 
employment of Guess and Test Algorithm (Fossorier, 
2004) for high girth which consumes too much time and 
results in many short cycles. Table 1 shows the parameters 
setup and summarizes the performance of the proposed 
QC-LDPC codes with respect to random codes employing 
BPSK modulation for different girths. 
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Table 1. Performance comparison of the proposed QC-
LDP C codes  with  respect  to random  codes  employing  
                                   BPSK modulation. 

 
Girth Code Length Rate Iterations Coding 

Gain Over 
Random 

codes 
(BER 10-5) 

dB 
12 (3,13) 2041 0.76 45 0.4 

16 (3,7) 2947 0.57 25 0.056 

20 (3,11) 3641 0.72 30 0.27 

 
 
3.2 Performance enhancement of the proposed 
      QC-LDPC codes with different code rates 
 
Performance enhancement and comparison of the 

newly obtained codes is shown in Fig. 4 employing 
different code rates. One way to accomplish the best and 
high rate LDPC code is the puncturing of low rate LDPC 
code and also some time puncturing columns. The 
drawback is that it reduces the block length and also 
effects in the performance. The proposed QC-LDPC codes 
take union of the rows in order to support the multiple 
coding rates as mentioned in point (5) of the proposed 
algorithm. It provides a simple overall architecture with a 
smaller chip area required to support all the needed rates.  

Throughout the simulation BPSK modulation scheme 
has been employed with 50 maximum number iterations. 
Simulation results in Fig. 4 portray that the proposed QC-
LDPC codes achieve a 0.1dB coding gain over randomly 
constructed codes and perform 1.3 dB from the Shannon-

limit at a BER of 610− with a code rate of 0.89 for block 
length of 1332. Simulation results show that the code 
optimization and girth conditioning not only improves the 
performance but also lowers the error floor for QC-LDPC 
codes. On the other hand random codes correspond to a 
smaller submatrix. The rigid weight constraints of the 
optimization process do not allow many variations in the 
random codes construction. The structure of random codes 
confines the construction of codes with both good cycle 
and girth properties and directs to error floor.  

The method to calculate the Shannon’s limit is as 
follows (Shannon, 1949); 

 
 ( )log 2 1 SR B N≤ +         (10) 

where, R represents the code rate and replace  the signal 
power S  by bRE  and the noise 

 power N by 0BN .  

0
log 2 1 bRER

B BN
⎛ ⎞⎛ ⎞≤ + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

          (11) 

R
B  is called the bandwidth efficiency in units of 

bit/second/Hz.  

substituting 
0

bE
N  with 

0
minbE

N
⎛ ⎞⎜ ⎟
⎝ ⎠

 and rearranging;  

 

( )

( )0

2 1
min

R
B

b
R

B

E
N

⎛ ⎞−⎜ ⎟⎛ ⎞ ⎝ ⎠≥⎜ ⎟
⎝ ⎠

          (12) 
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Fig. 4. Shannon’s limit of proposed QC-LDPC codes and 

randomly constructed codes, for block length 1332. 
 
 
4. Conclusion 
 
Channel coding plays key role in providing a reliable 

communication method that can overcome signal 
degradation in practical channels. This paper investigates 
the potential of large girth Quasi-Cyclic low density parity 
check codes and compares with renowned codes.  
Performance evaluation of the newly obtained codes has 
been established in term of BER and BLER for a given 
value of /b oE N . The newly constructed QC-LDPC codes 
have both theoretical as well as practical implications. 
Simulation results demonstrate that the proposed QC-
LDPC codes achieve a 0.1dB coding gain over randomly 
constructed codes and perform 1.3 dB from the Shannon-
limit at a BER of 610− with a code rate of 0.89 for block 
length of 1332.  
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